Supermetric Search with the Four-Point Property

نویسندگان

  • Richard C. H. Connor
  • Lucia Vadicamo
  • Franco Alberto Cardillo
  • Fausto Rabitti
چکیده

Metric indexing research is concerned with the efficient evaluation of queries in metric spaces. In general, a large space of objects is arranged in such a way that, when a further object is presented as a query, those objects most similar to the query can be efficiently found. Most such mechanisms rely upon the triangle inequality property of the metric governing the space. The triangle inequality property is equivalent to a finite embedding property, which states that any three points of the space can be isometrically embedded in two-dimensional Euclidean space. In this paper, we examine a class of semimetric space which is finitely 4-embeddable in three-dimensional Euclidean space. In mathematics this property has been extensively studied and is generally known as the four-point property. All spaces with the four-point property are metric spaces, but they also have some stronger geometric guarantees. We coin the term supermetric space as, in terms of metric search, they are significantly more tractable. We show some stronger geometric guarantees deriving from the four-point property which can be used in indexing to great effect, and show results for two of the SISAP benchmark searches that are substantially better than any previously published.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supermetric Search

Metric search is concerned with the efficient evaluation of queries in metric spaces. In general, a large space of objects is arranged in such a way that, when a further object is presented as a query, those objects most similar to the query can be efficiently found. Most mechanisms rely upon the triangle inequality property of the metric governing the space. The triangle inequality property is...

متن کامل

High-Dimensional Simplexes for Supermetric Search

In 1953, Blumenthal showed that every semi-metric space that is isometrically embeddable in a Hilbert space has the n-point property; we have previously called such spaces supermetric spaces. Although this is a strictly stronger property than triangle inequality, it is nonetheless closely related and many useful metric spaces possess it. These include Euclidean, Cosine and Jensen-Shannon spaces...

متن کامل

Common Fixed Point Theory in Modified Intuitionistic Probabilistic Metric Spaces with Common Property (E.A.)

In this paper, we define the concepts of modified intuitionistic probabilistic metric spaces, the property (E.A.) and  the common property (E.A.) in   modified  intuitionistic probabilistic metric spaces.Then, by the commonproperty (E.A.), we prove some common fixed point theorems in modified intuitionistic Menger probabilistic metric spaces satisfying an implicit relation.

متن کامل

Intelligent Tuned Harmony Search for Solving Economic Dispatch Problem with Valve-point Effects and Prohibited Operating Zones

Economic dispatch with valve point effect and Prohibited Operating Zones (POZs) is a non-convex and discontinuous optimization problem. Harmony Search (HS) is one of the recently presented meta-heuristic algorithms for solving optimization problems, which has different variants. The performances of these variants are severely affected by selection of different parameters of the algorithm. Intel...

متن کامل

(JCLR) property and fixed point in non-Archimedean fuzzy metric spaces

The aim of the present paper is to introduce the concept of joint common limit range property ((JCLR) property) for single-valued and set-valued maps in non-Archimedean fuzzy metric spaces. We also list some examples to show the difference between (CLR) property and (JCLR) property. Further, we establish common fixed point theorems using implicit relation with integral contractive condition. Se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016